​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
政策法规
首页  >  政策法规  >  详情 
水下无人潜航器集群发展现状及关键技术综述
来源:尖兵之翼 | 作者:张伟 王乃新 魏世琳 杜雪 严浙平 | 发布时间: 2022-01-14 | 11723 次浏览 | 分享到:
本文从军事领域和民用领域两方面介绍了国外主要水下无人潜航器集群项目,包括项目设立目标和发展情况......

针对水声通信的各种缺点和海洋中的客观不利条件,在已有的硬件条件基础上,仍可对通信效果进行可观的改善,达到节约能耗、减少数据丢包通信延迟带来的影响等目的。主要方法有:改变通信拓扑[29-30]、设计更高效的通信协议[31]、改变通信模式[32]等。近些年比较有代表性的研究有:文献[29]针对水声信道不稳定,存在时间延迟以及海洋背景噪声的问题,提出了一种基于Markov随机过程的双层独立变换通信拓扑,通过双层独立结构和不断切换的拓扑确保编队中全部潜航器都可以实现通信覆盖,并分析了在此变换拓扑条件下潜航器编队收敛的条件;在此基础上,严浙平等[33]又提出了有效的通信拓扑权重 (communication topology effective weight)的概念以更好地表示受噪声干扰的通信信息的有效性。

2.3 任务分配

任务分配是随着集群技术发展最早被研究的技术之一,任务分配的研究对象日益复杂,分配的任务也多样化。现阶段任务分配方法根据对应集群的控制方式不同主要分为集中式分配和分布式分配2种。

1) 集中式任务分配。这种分配方式需要各UUV将自身环境信息与执行任务的代价函数信息传输给控制中心,控制中心权衡各UUV和任务情况进行合理分配。这种方式高度依赖通信,且作为控制中心的UUV计算负担重。文献[34]基于增加了延时的petri网对多UUV系统任务分配问题建模,提出了集中式和分布式相结合的任务分配方式:任务由主UUV发布,各从UUV结合自身约束条件选择是否接受任务。文献[35]在高延迟和不可靠的通信条件下,描述了一种使用k均值聚类的高效集中式任务分配机制,该机制在信息数据包错误率达到80%时仍能完成任务分配;

2) 分布式任务分配。这种分配方式并不是将决定权完全交给单体UUV,而是给各个成员一定的自主决策权力,成员可根据局部信息按某些规则进行局部任务分配,有对通信依赖小、执行速度快的特点,但由于成员不能掌握整体信息,各UUV间可能存在竞争关系。分布式任务分配比较常用的方法是合同网算法[36-38]和SOM神经网络[39-42]。合同网算法是一种谈判协调,通过模仿经济行为的“招标— 投标—中标”机制来实现任务分配,具有并行计算、分布式通信、可扩展性和鲁棒性等特点。SOM神经网络实质上是一种竞争性学习方法,相比于合同网方法,由于没有前者的协商机制,成员间的竞争会更多。这种方法适用于多UUV对应于多目标任务的情况,其核心是分别以目标任务和UUV对应SOM神经网络的输入和输出量,任务间通过竞争计算对应到不同的UUV,通过这种方式控制UUV到达指定位置完成指定任务。

任务分配的核心目的是将集群的优势最大化,通过合理分配任务给不同的执行者,使任务执行时间最少或能耗最小。集中式任务分配理论上可以通过通信协商找到最合理的分配方式,但是通信本身不可靠,且通信本身也会浪费掉一些时间和能量;与此相比分布式虽然不能得到最优解,但是它的优势是能够根据局部信息更快的作出反应。因此在应用时通常是根据实际需求将2种方法结合起来,才能发挥比较理想的效果。

2.4 路径规划

路径规划问题是指在航行器工作环境中,按照一定的评价标准(耗能最少、路线最短、时间最少等)为UUV寻找一条安全到达目标点的最优路径。将该技术拓展到集群中,对控制和算法设计提出了更高的要求。路径规划首先要考虑的是安全问题,这是UUV到达目标的前提,因此避碰(包括集群内部成员避碰和避开障碍物)是此类问题中必须考虑的问题[43-45]。其次进行规划前要先定义规划的最优标准,不同标准利用的方法也有所不同,例如文献[46]将TSP问题(travelling salesman problem)与蚁群算法结合寻找UUV集群最短路径;而文献[47]则针对存在时变洋流影响的多AUV系统,将完成任务的时间最短作为规划目的并采用动态规划算法来实现。另外在规划完成后还要对路径的可行性进行验证,避免无效路径的产生并排除可能存在的不稳定因素[48-49]。

2.5 编队控制

某些多UUV任务中,UUV以编队形式集体移动。编队控制就是一种控制一组UUV在任务需要时沿着所需路径移动的技术,同时保持所需的队形,并适应环境约束:如障碍物,有限的空间,洋流和通信约束。对空中飞行器的编队控制的研究相比于水下UUV编队要成熟,但是由于水下特殊环境的限制,空中飞行器编队控制算法不能直接移植到多UUV控制中,因此多UUV编队控制技术是集群研究的焦点之一。目前主要的编队控制方法分为以下几种:虚拟结构方法、领航者-跟随者方法和人工势场法。

1)虚拟结构方法。

为了在多个机器人之间形成和保持某种几何形状,引入了形成的刚性结构作为参考,其中机器人的整体表现像是嵌入刚性结构中的粒子,这种方法就是虚拟结构法 (virtual structure, VS)。虚拟结构按预定轨迹航行,算法反复计算UUV与虚拟结构的误差并进行调整,同时保持各UUV之间的刚性几何关系,直到UUV到达所需队形。这种编队控制方式被广泛应用于飞行器编队,但在UUV集群中的研究还很少。文献[50]提出了虚拟领航者的编队结构,由于编队领航者是虚拟的,因此它具有准确的位置信息,基于虚拟引导的准确位置,可以获得UUV在编队中的预期位置,但是只研究了2D的情况,3D的编队控制还有待研究。