​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
热点资讯
首页  >  新闻聚焦   >  热点资讯  >   详情
无人机协同控制研究综述
来源:中国人民解放军陆军工程大学指挥与控制工程学院 | 作者:马子玉,何 明*,刘祖均,顾凌枫,刘锦涛 | 发布时间: 1412天前 | 25374 次浏览 | 分享到:
无人机(UAV)协同控制是指一组UAV 以机间通信为基础、群体智能为核心,合作分工完成某一共同任务的控制方式....

 

记x=[x1,x2,…,xn],A[k]=[aij(k)],则式(4)可写成矩阵形式:

 

相似地,智能体系统达到离散时间一致性的条件[33]为:

 

2.1.2 一致性控制研究现状

一致性控制起源于计算机科学和并行计算[34-35]。Vicsek等[36]提出的Vicsek模型实现了Reynolds三种规则中的“对齐”规则,集群中智能体以匀速率运动,其运动方向由周围邻居速度方向的平均值决定。过去的几年中,Jadbabaie 等[37]和Olfati-Saber等[38]的研究工作对其他学者研究一致性控制问题产生了相当大的影响。具体而言,Jadbabaie 等[37]将Vicsek 提出的动态模型线性化,通过图论和矩阵分析等工具为对齐行为提供理论支持。Olfati-Saber等[38]则提出了解决积分器网络一致性控制问题的一般性框架。随后Ren等[39]在此基础上将一致性问题推广到二阶系统,证明了有向网络中多智能体系统的稳定性。

在协同控制领域中一致性一直是一个重要而复杂的问题。一致性是指一组智能体通过传感器或通信网络相互交流,使得所有智能体的状态随时间趋于一致。根据通信方式的不同,主要分为微分和差分方程两种建模方式。最常见的动态微分方程为:

2.2 蜂拥控制

2.2.1 蜂拥算法

与一致性算法的策略相反,基于蜂拥算法的集群并不一定是一个刚性的形状或结构,即一致性算法要求系统是固定拓扑,而采用蜂拥算法的系统的拓扑结构在运动过程中可能会发生变化。蜂拥算法一般要求智能体满足Reylnolds[44]提出的三种规则,即:

 

其中 为基于梯度项,促进集群的形成 为一致性项,使智能体的速度逐渐一致 为导航反馈项,使智能体向目标方向运动。

2.2.2 蜂拥控制研究现状

蜂拥被定义为由一群可独立行动的个体组成群体以实现共同目标的集体行为。蜂拥控制算法的灵感来源于自然界中的蜂群和鸟群等自然群体,并主要参照Reylnolds[44]提出的三种规则建立分布式控制算法。Reylnolds根据附近邻居的位置和速度对智能体的运动建立Boid 模型,提出分离(碰撞避免)、对齐(速度匹配)和聚集(集群中心)三种规则。智能体的影响区域被分为3 个部分:排斥区(zor)、保持区(zoo)和吸引区(zoa)。以图2无人机为例,由于局部通信存在距离限制,无人机只能感知到一定范围内的个体。考虑到无人机的碰撞体积和活动范围,无人机间为避免发生碰撞应设置安全距离,即排斥区。在排斥区内,无人机间的排斥作用力会使两者距离逐渐增大。同时,为避免保持通信的两架无人机失去联系,会在感知范围内设置吸引区,通过吸引力使邻居无人机进入保持区。而在保持区的无人机间相对势能达到最小值,且两者运动方向将逐渐一致。

 

图2 智能体邻域分布

Fig.2 Agent neighborhood distribution

Moshtagh 等[45]基于图论知识提出一种新的蜂拥算法,通过最短距离控制来最小化相对势能以到达速度匹配和聚集的效果,实验结果证明即使集群的拉普拉斯矩阵发生变化时仍可以保持蜂拥,同时只要保证良好的通信还可以实现一致性控制。Martin 等[46]设计一种新的二阶动力学模型,认为智能体存在通信半径并且集群内各智能体的通信半径随机,并证明在选择合适的初始速度误差后集群最终实现蜂拥。Martinez 等[47]针对固定和移动障碍物下的集群行为进行研究,实验结果表明,在低噪声固定障碍物情况下,可以得到与之前相同的观察结果;但在移动障碍物情况下,集群的稳定性随障碍阻力的增加而加速破坏。同时发现另一个有趣的结论:在某些情况下,引入低阻力障碍物可得到比自由状态下更有序的集群。Zhao 等[48]提出一种具有改进自适应速度和加权策略的快速收敛模型,该模型认为少数个体对系统的影响比一般个体大,当它们中部分与集群失去联系时甚至会导致整个系统的崩溃。Jolles 等[49]将Reylnolds 模型用于对鱼群的集群行为研究,研究发现同类鱼个体离开群体探索未知区域(为获得更多食物,但风险增大)的倾向大体相同,同时鱼群间保持着清晰的吸引和排斥区,由它们的速度和航向决定。

2.3 编队控制

编队控制是指集群中所有无人机调整自己的位置状态以达到规定的几何形状。如果从感知能力和拓扑交互的角度来描述编队控制,便会遇到这样一个问题:为实现目标编队控制,传感器需要获取哪些参数信息,这些参数中又有多少是无人机可主动控制的。无人机可获取何种参数决定了个体的感知能力,同时可控的参数变量类型将与交互拓扑相联系,例如如果无人机的全局位置信息可以被主动控制,那么这些无人机便可直接移动到目标位置,而不需要局部信息交流;如果可以主动控制无人机间的距离,那么将系统视为固定拓扑,集群的网络结构则为刚体。基于以上信息,可将现有编队控制的研究分为基于坐标控制、基于位移控制和基于距离控制三种研究。表1展示了三种控制方式的主要区别。

表1 三种控制方式的区别

Tab.1 Differences between three control methods

 

2.3.1 编队算法

根据编队算法的分类将先介绍一般性编队控制算法,之后讨论基于坐标、位移和距离三种控制算法的区别。一般性编队算法的动态方程为:

 

其中:xi ∈ 表示无人机的状态信息,ui ∈ 和yi ∈ 表示可获取的参数变量,zi ∈Rr 表示无人机i 的状态输出。设z* ∈Rnr 为给定的时间函数,则式(8)的目标编队可以写成以下约束形式:

 

如此,一般性编队控制问题便是在仅获取参数变量yi 的情况下,如何设计一种控制协议使得关于无人机系统(8)的集合Ez*={x:F(z)= F(z*)}渐进稳定。

基于坐标控制 参数yi 是在全局坐标系下的绝对变量,无人机i可主动控制自己的输出zi,式(9)可写为:

 

基于位移控制 参数yi是在全局坐标系下获取的相对变量,无人机i的输出zi具有平移不变性,式(9)可写为:

 

基于距离控制 参数yi是在智能体的局部坐标系而非全局坐标系下获取的相对变量,无人机i的输出zi具有平移和旋转不变性,式(9)可写为:

 

2.3.2 编队控制研究现状

基于坐标控制 智能体根据全局坐标系确定自己的位置。主动控制自己的坐标,移动到全局坐标系下的目标位置以实现协同控制。基于坐标控制的研究方向一般分为两种:1)凭借各智能体之间的相互作用来提高编队控制性能;2)引入全局协调器从个体获取反馈并为群体提供适当的协同命令,在个体的驱动能力有限或者受到干扰时这种反馈式协同十分有益。Van Tran 等[50]在假设智能体可感知自身状态和邻居相对于全局坐标系状态的条件下,提出了一种基于位置的控制协议来驱动智能体跟踪期望轨迹;Cortés[51]在基于位置控制的基础上引入分布式位置估计,每个智能体都沿最短路径运动到目标位置,实验表明系统全局估计位置以指数形式收敛至实际位置,实际位置以指数形式收敛至目标位置;刘祖均等[52]基于分布式重新建立主机-从机协议,成功实现多无人机的避障和编队重构。

基于位移控制 智能体主动控制与邻近智能体的相对位移以实现协同控制,假设每个智能体能够感知到邻近智能体相对于全局坐标系的相对位置,这意味着智能体需要知道全局坐标系统的方向。不过这些智能体既不需要全局坐标系本身信息,也不需要清楚它们关于该坐标系的具体位置。Cortes[53]研究了相对位置感知故障和错误的系统鲁棒性问题,提出一种用于离散时域单积分器智能体模型的协同控制算法,并验证该算法对测量失败和错误的鲁棒性。在智能体局部坐标系方向相同的条件下,Han 等[54]通过局部通信使用速度和位移测量来估计邻居的实时相对位置,结果表明持续控制输入条件下相对位置的估计值和相对速度间呈指数收敛关系。

基于距离控制 主动控制智能体间的距离以达到由期望距离所形成的协同控制。假设单个智能体可感知相邻智能体在自己局部坐标系下的相对位置,同时局部坐标系并不需要完全对齐。在基于距离的控制中,即使智能体模型是线性的,控制协议一般也是非线性的。此外多智能体系统在基于距离的控制协议下的不变集分析也是目前研究的重点。如果多智能体系统的交互图不完整,则需要智能体通过控制部分智能体间的距离来达到期望的距离。Kang 等[55]提出基于距离的领导者跟随控制算法,通过自适应算法来测量相对位移以估计领导者的速度。Ahn 等[56]设计n 维基于距离的无向协同控制,但关注的是局部稳定性。在集群中只有单智能体接收到编队控制的具体信息的情况下,Yang 等[57]提出一种分布式估计器协助智能体估计变量,并在一般刚性结构系统中取得较好结果。

   3 问题与挑战  

随着应用无人机的不断普及,越来越多的现实问题开始出现在研究者面前。时延[58]、通信带宽[59]和躲避障碍[60]等问题阻碍无人机技术的发展,虽然学者已经取得一些相关成果,但离完全解决仍有很大的距离。

时延 由于传输速度限制,且传感器获取信息需要一定时间,实际生活中几乎所有系统都存在时延问题。无人机集群在执行任务时需要对系统发出的指令立刻做出反应,以应对碰撞避免、障碍躲避等问题。在一致性控制中,时延可大致分为通信时延和输入时延,前者是通信距离造成的延迟,后者则是无人机在飞行中更新运动信息产生的延迟。Hu 等[60]证明只要通信时延在一定阈值内便不会造成系统崩溃,但依旧会影响系统的稳定性。Min 等[61]基于分数阶微积分模型求出一阶系统实现一致性的必要条件,并设置输入时延的最大上限,但对于高阶非线性系统,仍没有较好的解决方法。

避障 躲避障碍是无人机执行任务不可避免的问题,对于个体具有自主决策能力的多无人机系统而言,在移动过程中躲避障碍是最基本的要求。在蜂拥控制中,避障控制的基本策略是将前方障碍物想象成一个圆柱体模型[62],存在多个障碍物时无人机会优先避开最近的目标,但该方法没有考虑障碍物的实际大小以及障碍物与无人机之间的距离对无人机转向控制力的影响。Olfati-Saber[63]假设障碍物是一个移动的智能体,障碍物进入无人机感知范围时将障碍物视作邻居处理,但无人机在绕过障碍物后仍会受到障碍物影响。路径规划问题是无人机研究领域的一个热点,通常采用蚁群算法和模拟退火算法等算法寻找出一条合理路线,但这需要全部障碍物的位置信息。对于未知环境还需依靠无人机本身的自主决策能力。