[28]SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: Survey and recommendations[J]. Engineering with Computers, 2001,17(2): 129. DOI: 10.1007/pl00007198
[29]BHOSEKAR A, IERAPETRITOU M. Advances in surrogate-based modeling, feasibility analysis, and optimization: A review[J]. Computers & Chemical Engineering, 2018, 108: 250. DOI: 10.1016/j.compchemeng.2017.09.017
[30]IMMONEN E. 2D shape optimization under proximity constraints by CFD and response surface methodology[J]. Applied Mathematical Modelling, 2017, 41: 508. DOI: 10.1016/j.apm.2016.09.009
[31]EBRAHIMI M, JAHANGIRIAN A. Aerodynamic optimization of airfoils using adaptive parameterization and genetic algorithm[J]. Journal of Optimization Theory & Applications, 2014, 162: 257. DOI: 10.1007/s10957-013-0442-1
[32]MASDARI M, TAHANI M, NADERI M H, et al. Optimization of airfoil based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm[J]. Journal of Cleaner Production, 2019, 222: 47. DOI: 10.1016/j.jclepro.2019.02.237
[33]ZHAO Huan, GAO Zhenghong.Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations, 2019, 36(3): 971. DOI: 10.1108/EC-05-2018-0215
[34]NIKOLAEV N V. Optimization of airfoils along high-aspect-ratio wing of long-endurance aircraft in trimmed flight[J].Journal of Aerospace Engineering, 2019, 32(6): 1. DOI: 10.1061/(ASCE)AS.1943-5525.0001086
[35]YANG Shanling, SPEDDING G R. Separation control by external acoustic excitation at low Reynolds numbers[J]. AIAA Journal, 2013, 51(6):1506. DOI: 10.2514/1.J052191
[36]BUCHMANN N A, ATKINSON C, SORIA J. Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil[J]. Experiments in Fluids, 2013, 54(3):1485. DOI: 10.1007/s00348-013-1485-7
[37]左伟, 顾蕴松, 王奇特, 等. 低雷诺数下机翼气动特性研究及控制[J]. 航空学报, 2016, 37(4): 1139
ZUO Wei, GU Yunsong, WANG Qite, et al. Aerodynamic characteristics and flow control on a rectangular wing at low Reynolds number[J]. Acta Aeronautica et Astronautloa Sinica, 2016, 37(4): 1139. DOI: 10.7527 /S1000-6893.2015.0208
[38]刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4): 518
LIU Peiqing, MA Lichuan, QU Qiulin, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at lowRe number[J]. Acta Aerodynamica Sinica, 2013, 31(4): 518
[39]FOUATIH O M, MEDALE M, IMINE O, et al. Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators[J]. European Journal of Mechanics-B/Fluids, 2016, 56: 82. DOI: 10.1016/j.euromechflu.2015.11.006
[40]王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55
WANG Xin, LI Shan, TANG Zhanqi, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55. DOI: 10.11729/syltlx20170092
[41]CHANDRASEKHARA M S, MARTIN P B, TUNG C. Compressible dynamic stall control using a variable droop leading edge airfoil[J]. Journal of Aircraft, 2004, 41(4): 862. DOI: 10.2514/1.472
[42]JEFFREY D, ZHANG Xin, HURST D W. Aerodynamics of Gurney flaps on a single-element high-lift wing[J]. Journal of Aircraft, 2000, 37(2): 295. DOI: 10.2514/2.2593
[43]LI Daochun, ZHAO Shiwei, ANDREA D R, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46. DOI: 10.1016/j.paerosci.2018.06.002
[44]MONNER H P. Realization of an optimized wing camber by using form variable flap structures[J]. Aerospace Science and Technology, 2001, 5(7): 445. DOI: 10.1016/s1270-9638(01)01118-x
[45]LAFOUNTAIN C, COHEN K, ABDALLAH S. Camber controlled airfoil design for morphing UAV[C]//Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2009: 092407. DOI: 10.2514/6.2009-1435
[46]DELLA V P, CORCIONE S, PECORA R, et al. Design and integration sensitivity of a morphing trailing edge on a reference airfoil: The effect on high-altitude long-endurance aircraft performance[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(20): 2933. DOI: 10.1177/1045389X17704521